
Virtual Machines

Sorav Bansal



Virtualization

Providing a hardware-like view to each process

or

Running an OS inside another OS

or

Running multiple OSes on single physical 
hardware

Emulating a physical machine in software
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This Lecture

• Why?
– Applications of Virtualization

• How?
– Binary translation
– Memory virtualization
– Device emulation (Disk, NIC, …)

• Looking ahead…



Advantages of Virtualization

• Server consolidation

• Best of all worlds
– e.g., run Windows and Linux simultaneously

• Complete isolation between applications
– e.g., Internet VM and development VM (desktop)
– e.g., Mail server VM and print server VM (server)

• Encapsulation (a VM is just a file)
– e.g., snapshotting

• New Applications: Security, Reproducibility, Monitoring, Migration, 
Legacy systems, …



How it works?

1. Interpretation (e.g., bochs)
– Interpret each instruction and emulate it

• e.g., Each instruction is implemented by a C function
– incl (%eax):

» r = regs[EAX];
» tmp = read_mem(r);
» tmp++;
» write_mem(r, tmp);

– Slowdown? 50x

2. Binary Translation (e.g., qemu)
– Translate each guest instruction to the minimal set of host instructions required to emulate it

• e.g.:
– incl (%eax)

» leal mem0(%eax), %esi
» incl (%esi)

– Advantages
• Avoid function-call overhead of interpreter-based approach
• Can re-use translations by maintaining a translation cache

– Slowdown? 5-10x



How it works? (..contd)

• VMM: Direct execution whenever possible, binary translate otherwise
– reg-reg instructions. e.g., movl %eax, %ecx

• always possible

– reg-mem instructions. e.g., movl (%eax), %ecx
• Need “Memory Virtualization”! (next slide)

– I/O instructions. e.g., in %eax
• No! Need binary translation
• In most cases, the instruction is trying to access a device. Need to emulated the device in 

software
• DMA requests handled similarly

– Traps?
• Trap in the VMM, take control of the situation and trap to guest OS if needed

– Interrupts?
• Deliver interrupts to guest OS at safe instruction boundaries

– Slowdown? 0-50%, typically 20%... good!



Virtual Machine Monitor (VMM)
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Old Idea (1960s) : IBM Mainframes
Was a good idea for expensive hardware at that time



Virtual Machine Monitors

• [Popek, Goldberg 1974]
– An architecture is virtualizable if the set of instructions that could 

affect the correct functioning of the VMM are a subset of the 
privileged instructions
• i.e., all sensitive instructions must always pass control to the VMM

• x86 was not designed to be virtualizable
– VMware Solution

• Binary translate sensitive instructions to force them to trap into VMM
• Most instructions execute identically

• Intel VT  and AMD-V (2008)
– Support for virtualization in hardware for x86
– Obey the principles required to make hardware virtualizable
– Hence, on modern machines, we no longer require binary translation



Virtual Machine Monitor

• Hardware Support (IBM Mainframes 1960s, 
Intel VT/AMD-V 2006)
– Simple and fast to develop

– Expected to be faster

• Binary Translation (VMware 1998)
– More flexible

– Often faster

• ParaVirtualization (Xen 2003)
– Much more efficient

– But… can only run a particular kernel (modified 
version of Linux) on it



Outline

• CPU Background

• Virtualization Techniques

– System ISA Virtualization

– Instruction Interpretation

– Trap and Emulate

– Binary Translation

– Hybrid Models
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CPU Organization

• Instruction Set Architecture (ISA)
Defines:

– the state visible to the programmer 
• registers and memory

– the instruction that operate on the state

• ISA typically divided into 2 parts
– User ISA

• Primarily for computation

– System ISA
• Primarily for system resource management

Slide Author: Scott Devine



User ISA - State

User Virtual 
Memory

Program Counter

Condition Codes

Reg 0

Reg 1

Reg n-1

FP 0

FP 1

FP n-1

Special-Purpose
Registers

General-Purpose
Registers

Floating Point
Registers

Slide Author: Scott Devine



User ISA – Instructions

Add
Sub
And
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…

Load byte
Load Word
Store Multiple
Push
…

Jump
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Call
Return
…

Add single
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…
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Fetch Registers Issue

Control 
Flow
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System ISA
• Privilege Levels

• Control Registers

• Traps and Interrupts

– Hardcoded Vectors

– Dispatch Table

• System Clock

• MMU

– Page Tables

– TLB

• I/O Device Access

System

User

User

Extension

Kernel
Level 0

Level 1

Level 2
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Outline

• CPU Background

• Virtualization Techniques

– System ISA Virtualization

– Instruction Interpretation

– Trap and Emulate

– Binary Translation

– Hybrid Models

Slide Author: Scott Devine



Isomorphism

Formally, virtualization involves the construction of 
an isomorphism from guest state to host state.

Guest

Si Sj

Host

Si’ Sj’

e(Si)

e’(Si’)

V(Si) V(Sj)
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Virtualizing the System ISA
• Hardware needed by monitor

– Ex: monitor must control real hardware interrupts

• Access to hardware would allow VM to 
compromise isolation boundaries
– Ex: access to MMU would allow VM to write any page

• So…
– All access to the virtual System ISA by the guest must 

be emulated by the monitor in software.

– System state kept in memory.

– System instructions are implemented as functions in 
the monitor.

Slide Author: Scott Devine



Example: CPUState

static struct {

uint32  GPR[16];

uint32  LR;

uint32  PC;

int IE;

int IRQ;

} CPUState;

void CPU_CLI(void)

{

CPUState.IE = 0;

}

void CPU_STI(void)

{

CPUState.IE = 1;

}

• Goal for CPU virtualization techniques
– Process normal instructions as fast as possible 

– Forward privileged instructions to emulation routines

Slide Author: Scott Devine



Instruction Interpretation

• Emulate Fetch/Decode/Execute pipeline in 
software

• Postives

– Easy to implement

– Minimal complexity

• Negatives

– Slow!
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Example: Virtualizing the Interrupt Flag
w/ Instruction Interpreter

void CPU_Run(void)

{

while (1) {

inst = Fetch(CPUState.PC);

CPUState.PC += 4;

switch (inst) {

case ADD:

CPUState.GPR[rd] 

= GPR[rn] + GPR[rm];

break;

…

case CLI:

CPU_CLI();

break;

case STI:

CPU_STI();

break;

}

if (CPUState.IRQ

&& CPUState.IE) {

CPUState.IE = 0;

CPU_Vector(EXC_INT);

}

}

}

void CPU_CLI(void)

{

CPUState.IE = 0;

}

void CPU_STI(void)

{

CPUState.IE = 1;

}

void CPU_Vector(int exc)

{

CPUState.LR = CPUState.PC;

CPUState.PC = disTab[exc];

}

Slide Author: Scott Devine



Trap and Emulate
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“Strictly Virtualizable”

A processor or mode of a processor is strictly 
virtualizable if, when executed in a lesser 
privileged mode:

• all instructions that access privileged state 
trap

• all instructions either trap or execute 
identically

• …

Slide Author: Scott Devine



Issues with Trap and Emulate

• Not all architectures support it

• Trap costs may be high

• Monitor uses a privilege level

– Need to virtualize the protection levels

Slide Author: Scott Devine



Binary Translator
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Basic Blocks

vPC mov ebx, eax

cli

and   ebx, ~0xfff

mov ebx, cr3

sti

ret

Guest Code

Straight-line code

Control flow

Basic Block
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Binary Translation

vPC mov ebx, eax

cli

and   ebx, ~0xfff

mov ebx, cr3

sti

ret

mov ebx, eax

call  HANDLE_CLI

and   ebx, ~0xfff

mov [CO_ARG], ebx

call  HANDLE_CR3

call  HANDLE_STI

jmp HANDLE_RET

start

Guest Code Translation Cache
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Binary Translation

vPC mov ebx, eax

cli

and   ebx, ~0xfff

mov ebx, cr3

sti

ret

mov ebx, eax

mov [CPU_IE], 0

and   ebx, ~0xfff

mov [CO_ARG], ebx

call  HANDLE_CR3

mov [CPU_IE], 1

test  [CPU_IRQ], 1

jne

call  HANDLE_INTS

jmp HANDLE_RET

start

Guest Code Translation Cache
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Basic Binary Translator
void BT_Run(void)

{

CPUState.PC = _start;

BT_Continue();

}

void BT_Continue(void)

{

void *tcpc;

tcpc = BTFindBB(CPUState.PC);

if (!tcpc) {

tcpc = BTTranslate(CPUState.PC);

}

RestoreRegsAndJump(tcpc);

}

void *BTTranslate(uint32 pc)

{

void *start = TCTop;

uint32 TCPC = pc;

while (1) {

inst = Fetch(TCPC);

TCPC += 4;

if (IsPrivileged(inst)) {

EmitCallout();

} else if (IsControlFlow(inst)) {

EmitEndBB();

break;

} else {

/* ident translation */

EmitInst(inst);

}

}

return start;

}

Slide Author: Scott Devine



Basic Binary Translator – Part 2
void BT_CalloutSTI(BTSavedRegs regs)

{

CPUState.PC = BTFindPC(regs.tcpc);

CPUState.GPR[] = regs.GPR[];

CPU_STI();

CPUState.PC += 4;

if (CPUState.IRQ

&& CPUState.IE) {

CPUVector();

BT_Continue();

/* NOT_REACHED */

}

return;

}

Slide Author: Scott Devine



Controlling Control Flow

vEPC test  eax, 1

jeq

add   ebx, 18

mov ecx, [ebx]

mov [ecx], eax

test  eax, 1

jeq

call  END_BB

call  END_BB

start

Guest Code Translation Cache

ret
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Controlling Control Flow

vEPC

test  eax, 1

jeq

add   ebx, 18

mov ecx, [ebx]

mov [ecx], eax

test  eax, 1

jeq

call  END_BB

call  END_BB

Guest Code Translation Cache

ret

add   ebx, 18

mov ecx, [ebx]

mov [ecx], eax

call  HANDLE_RET

eax == 0

find
next
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Controlling Control Flow

vEPC

test  eax, 1

jeq

add   ebx, 18

mov ecx, [ebx]

mov [ecx], eax

test  eax, 1

jeq

jmp

call  END_BB

Guest Code Translation Cache

ret

add   ebx, 18

mov ecx, [ebx]

mov [ecx], eax

call  HANDLE_RET

eax == 0

Slide Author: Scott Devine



Controlling Control Flow

vEPC

test  eax, 1

jeq

add   ebx, 18

mov ecx, [ebx]

mov [ecx], eax

test  eax, 1

jeq

jmp

call  END_BB

Guest Code Translation Cache

ret

add   ebx, 18

mov ecx, [ebx]

mov [ecx], eax

call  HANDLE_RET

eax == 1

find
next

mov [ecx], eax

call  HANDLE_RET

Slide Author: Scott Devine



Controlling Control Flow

vEPC

test  eax, 1

jeq

add   ebx, 18

mov ecx, [ebx]

mov [ecx], eax

test  eax, 1

jeq

jmp

jmp

Guest Code Translation Cache

ret

add   ebx, 18

mov ecx, [ebx]

mov [ecx], eax

call  HANDLE_RET

eax == 1

mov [ecx], eax

call  HANDLE_RET

Slide Author: Scott Devine



Issues with Binary Translation

• Translation cache index data structure

• PC Synchronization on interrupts

• Self-modifying code

– Notified on writes to translated guest code

Slide Author: Scott Devine



Other Uses for Binary Translation

• Cross ISA translators

– Digital FX!32

• Optimizing translators

– H.P. Dynamo

• High level language byte code translators

– Java

– .NET/CLI

Slide Author: Scott Devine



Hybrid Approach

• Binary Translation for the Kernel
• Direct Execution (Trap-and-emulate) for the User
• U.S. Patent 6,397,242

DirectExec
OK?

Direct Execution
Jump to Guest PC

Yes

Execute
In TC

TC 
Validate

Handle
Priv.

Instruction
No Callout

Trap
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Binary Translation solution

• Run the guest OS in ring-3

• Is it always possible?

– When is it possible?

• BT a solution to get-around architectures 
where this is not possible.

– Before executing “any” code, study it… if 
necessary, translate it so that it runs safely.



Binary Translation

• Maintain a software vcpu state.
struct vcpu {

register   regs[8];

cregister cregs[3];

…

}

• But maintain “most of this state” in actual 
hardware registers “most of the time”

• For example, all regular registers can be 
maintained in actual hardware. But control 
registers will always need to be emulated using 
vcpu struct fields.



Binary Translation : what do we need

• A method to translate back and forth between 
the hardware state and the vcpu state

• A way to access the vcpu state from native 
execution (how: reserve one register to point 
to vcpu struct, and use it to access it’s 
members)

• e.g.:

– “mov eax, cr0” translates to “mov eax, vcpu.cr0”



Binary Translation

• Some instructions might need to take the 
“slow path” and get emulated.

• e.g., mov eax, cr3

– This instruction specifies that we now have a new 
page table. We need to update many data 
structures inside the VMM to reflect this change, 
so such an instruction is best emulated:

• Translate hardware state to vcpu

• Emulate the instruction in software (similar to bochs)

• Translate the vcpu state back to hardware.



Translation Blocks

• Divide code into “translation blocks”

– A translation block ends if

• Reach a control-flow instruction

• Or, MAX_INSNS instructions have been translated



A Simple Scheme

Original 
code 

fragment

Binary
Translator

x:
Translated 

code 
fragment

tx:



Use a Cache

Original 
code 

fragment

Binary
Translator

x:
Translated 

code 
fragment

tx:

Translation
Cache

Lookup using  xsave
found

not-found



Direct Jump Chaining

a

b c

d

Ta

Tb Tc

Td

lookup(b) lookup(c)

lookup(d) lookup(d)



Indirect Jumps

a

b
f

call

ret

Ta

Tf

Tb

lookup(retaddr)

push b
jmp Tf

pop retaddr

tmp JTABLE[retaddr & MASK]
if (tmp.src == retaddr)

goto tmp.dst



Binary Translation Example
f(x)  = -1 if x < 0

0 ow

0x0: movl $0, %eax

0x5: cmpl $0,  %ecx

0x8: jge 0x10

0xa: movl $-1, %eax

0x10: ret

0x800: movl $0, %eax

0x800: cmpl $0,  %ecx

0x803: jge [0x10-trans]

0x807: jmp [0xa-trans]

…        : …

0x90a: movl $-1, %eax

…        : …

0xa10: movl (%esp), %esi

0xa15: jmp lookup

0xa17: movl %esi, (%esp)
0xa1c: ret

Original:
movl $0,%eax
cmpl $0, %ecx

jge 0x10

movl $-1, %eax

ret

Translated:

NOTES:
•[0xabc-trans] represents the address of the translated code for the basic block starting at 0xabc in original code.
•lookup() is a function that converts 0xabc to [0xabc-trans]. Both input and output of this function are assumed to be 
in the register %esi. The function must not modify memory or stack in any way
•If a basic block starting at 0xabc has not been previously translated, a control transfer to [0xabc-trans] transfers 
control to the binary translator. Once the translation has been done, all subsequent translations jump directly to the 
translated code
•It is possible to optimize away some “jmp” instructions by more intelligent code placement



Binary Translation

• Perform translation in “translation blocks”
– A translation block is a straight-line code fragment starting at a 

particular address
– A translation block is identified by the starting address

• For direct jumps and function calls
– Transfer control to the translated address

• For indirect jumps and function returns
– Use the lookup() function

• For privileged instructions and I/O requests
– Binary translate to emulate in software
– May need to execute a few times to identify instructions that can trap



Hardware Virtualization

• Making x86 virtualizable
– Host  mode and guest mode.

• Any privileged instruction executing in guest mode must trap 
to the VMM running in host mode.

– Optimization: VMCBs (virtual machine control blocks)
• Shadow state for guest maintained by hardware
• Many privileged instructions update/read only VMCB rather 

than reading the actual hardware
• VMCB maintained and read by VMM.

• Pros: Writing a VMM much easier
• Cons: Only solves the many-on-one problem. 

What about security, reproducibility, monitoring? 
Nesting?



Hardware vs Software Virtualization

Even with all the extra logic in hardware to implement 
virtualization, software virtualization seems to perform 
better than hardware virtualization.

In hardware virtualization, many privileged instructions 
trap (100s of cycles)

A binary translation system instead replaces the trapping 
instruction with a few 10s of instructions

K. Adams, O. Agesen. A Comparison of Software and Hardware 
Techniques for x86 Virtualization, ASPLOS 2006.



Memory Virtualization

Memory architecture review:

App

Page Tables 
(H/W)

Physical Memory

VA

PA Page

Page

•OS is responsible for setting up 
and switching between page 
tables for different processes

•Hardware implements fast table 
lookup using Translation Lookaside
Buffers (TLB)

• Without TLB support, each 
memory read/write would require 
3-5 extra memory accesses to 
lookup page tables!



Memory Virtualization

• Now, we need two-level translations:

Guest VA   Guest PA  Host PA

• New terminology in virtual environment:
– Guest VA = Virtual Address (VA)

– Guest PA = Physical Address (PA)

– Host PA = Machine Address (MA)



Memory Virtualization

• One option:

Page Tables
(H/W)

Physical Memory

PA

MA Page

Page

Page Tables
(S/W)

Guest
OS 

+App

VA Page

SLOW!!
Each memory access needs to 
be translated in software 

VMM

VMM sets up the 
translation tables from 
VA to PA



Memory Virtualization

• Better Option

Page Tables
(H/W)

Physical Memory

MA Page

Guest
OS 

+App

VA Page

VMM

•VMM sets up the translation 
tables from VA MA directly.

•VMM maintains separate page 
tables from VAPA to perform 
bookkeeping (also called shadow 
page tables)

Memory access is at near-
native speed 



Memory Virtualization

• Many interesting issues:
– How to reclaim memory from a Guest OS?
– Memory overcommitment
– Page sharing
– Performance

Carl A. Waldspurger. Memory Resource Management in VMware ESX 
Server, Proceedings of the Fifth Symposium on Operating Systems 
Design and Implementation (OSDI '02), Boston, Massachusetts, 
December 2002.



I/O Devices

• Simple approach
– Emulate a common I/O device in software

• Examples:
– SCSI Disk: Expose a well-known storage adapter. Store disk data in 

a file. Each operation decoded and state updated appropriately

– Network card: Buffer outgoing packets and send them over the 
network. For incoming packets, generate interrupts into the 
Guest OS 

• J. Sugerman, G. Venkitachalam, B. Lim. Virtualizing I/O Devices 
on VMware Workstation's Hosted Virtual Machine Monitor. 
USENIX Technical Conference 2002



Traditional Architecture

Hardware

Virtual Machine Monitor

Linux
Linux 

(devel)
XP Vista MacOS



Hosted Monitor Architecture

Hardware

Kernel 
module

User 
app

Virtual Machine Monitor

Host OS (Windows XP)

Guest OS (Linux)



VMware ESX 2.0

Source: http://www.vmware.com/pdf/esx2_performance_implications.pdf



Xen 3.0

Source: Ottawa Linux Symposium 2006 presentation.
http://www.cl.cam.ac.uk/netos/papers/

http://www.cl.cam.ac.uk/netos/papers/2006-xen-ols.pdf


Client Virtualization

• VMM on client computers

– Management (Software Version Control)

– Homogeneity (Gold image)

– Security (e.g., VMware ACE)

– Mobility (e.g., Moka5)

– Desktop-as-a-service?

• Not as successful (yet)



Looking ahead …

• Ability to give 0.1 of a machine’s resources
– Cloud Computing (e.g., Amazon’s EC2)

• 10 cents per compute hour
• 10 cents per GB-month
• 10 cents per GB of data transfer

• Ability to record and replay a machine execution deterministically
– Software debugging
– High availability

• Mobile desktops
– USB stick (Moka5)
– Leverage the cloud to de-couple data from devices

• Enterprise IT infrastructure
– Use secured/restricted-use company VMs on employee laptops



Cloud Computing Synonyms

• Platform-as-a-service

• Software-as-a-service

• Grid Computing (Sun)

• Utility Computing (IBM)

• Ubiquitous computing

• IBM Mainframes



What has changed?

• Connectivity

• Many small-to-medium sized users

• Maintenance cost

• Device Variety

• Cost model

• Pricing model

So, are we going back to the mainframes?



IBM Mainframes (circa 1960)

IBM Mainframe

VMM

OS OS OS

App AppApp
AppApp App

Was a good idea because hardware was expensive



Modern Cloud Environments (2010)

“Cloud-OS”

OS OS OS

App AppApp
AppApp App



“Cloud-OS”

• Infrastructure Layer (slave) + Management 
layer (master)

• Unit of abstraction = VM

• Divide hardware into resource pools

• Efficient

• Effective Isolation

• Dynamic

• Fault-Tolerant



Virtualization “Add-ons”

Addons:

• Record/Replay

• Monitoring

• Security

• Software Version Control

• Virtual Appliances


